Approaches to Multisensor Data Fusion
نویسنده
چکیده
s part of an Office of Naval Research–funded science and technology development task, APL is developing an identification (ID) sensor data fusion testbed. The testbed is driven by an APL-modified version of the Joint Composite Tracking Network pilot benchmark called the Composite Combat ID Analysis Testbed (CAT). The CAT provides accurate tracking for realistic scenarios involving multiple targets and netted radar and ID sensors. Track state outputs from the CAT include feature information from electronic support measures and noncooperating target recognition sensors. These data are combined to improve the confidence of aircraft-type declarations using both Bayesian and evidential reasoning–based algorithms. We use measure theoretic methods to describe the relationship between Bayesian theory and the Dempster-Shafer evidential reasoning theory.
منابع مشابه
A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant
This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...
متن کاملFeature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis
These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...
متن کاملParametric and Nonparametric Approaches for Multisensor Data Fusion
PARAMETRIC AND NONPARAMETRIC APPROACHES FOR MULTISENSOR DATA FUSION
متن کاملDesigning a Home Security System using Sensor Data Fusion with DST and DSMT Methods
Today due to the importance and necessity of implementing security systems in homes and other buildings, systems with higher certainty, lower cost and with sensor fusion methods are more attractive, as an applicable and high performance methods for the researchers. In this paper, the application of Dempster-Shafer evidential theory and also the newer, more general one Dezert-Smarandache theory ...
متن کاملMulti sensor data fusion with filtering
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. There are various multisensor data fusion approaches, of which Kalman filtering is one of the most significant. Methods for Kalman filter based data fusion include measurement fusion and state fusion. This paper gives a simple a review of fusion and state fusion, and second...
متن کاملOn the use of χ statistics of the Kalman Filter as contextual information in multisensor Kalman filtering
Multisensor data fusion has found widespread application in industry. The objective of data fusion is to provide an improved estimate of a state from a set of data provided by different sensors. Among the various multisensor approaches, Kalman filtering is one of the most significant. Reliability of the data provided by the sensor is a key factor for the integrity of the fusion process. Kalman ...
متن کامل